Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates

نویسندگان

چکیده

We provide a new analysis of the Boltzmann equation with constant collision kernel in two space dimensions. The scaling-critical Lebesgue is $$L^2_{x,v}$$ ; we prove global well-posedness and version scattering, assuming that data $$f_0$$ sufficiently smooth localized, norm small. proof relies upon bilinear spacetime estimate for “gain” term Boltzmann’s equation, combined novel application Kaniel–Shinbrot iteration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost global well-posedness of Kirchhoff equation with Gevrey data

Article history: Received 26 November 2016 Accepted after revision 3 April 2017 Available online 18 April 2017 Presented by the Editorial Board The aim of this note is to present the almost global well-posedness result for the Cauchy problem for the Kirchhoff equation with large data in Gevrey spaces. We also briefly discuss the corresponding results in bounded and in exterior domains. © 2017 A...

متن کامل

Sharp Global Well-posedness for a Higher Order Schrödinger Equation

Using the theory of almost conserved energies and the “I-method” developed by Colliander, Keel, Staffilani, Takaoka and Tao, we prove that the initial value problem for a higher order Schrödinger equation is globally wellposed in Sobolev spaces of order s > 1/4. This result is sharp.

متن کامل

Global Well-posedness for Periodic Generalized Korteweg-de Vries Equation

In this paper, we show the global well-posedness for periodic gKdV equations in the space H(T), s ≥ 1 2 for quartic case, and s > 5 9 for quintic case. These improve the previous results of Colliander et al in 2004. In particular, the result is sharp in the quartic case.

متن کامل

Global Well-posedness and Scattering for Derivative Schrödinger Equation

In this paper we mainly study the Cauchy problem for the derivative nonlinear Schrödinger equation in d-dimension (d ≥ 2). We obtain some global well-posedness results with small initial data. The crucial ingredients are L e , L ∞,2 e type estimates, and inhomogeneous local smoothing estimate (L e estimate). As a by-product, the scattering results with small initial data are also obtained.

متن کامل

Global Well-posedness for the Radial Defocusing Cubic Wave Equation on R and for Rough Data

We prove global well-posedness for the radial defocusing cubic wave equation

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archive for Rational Mechanics and Analysis

سال: 2021

ISSN: ['0003-9527', '1432-0673']

DOI: https://doi.org/10.1007/s00205-021-01613-y